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Multiscale correlations and conditional averages in numerical turbulence
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The equations of motion for theth order velocity differences raise the interest in correlation functions
containing both large and small scales simultaneously. We consider the scaling of such objects and also their
conditional average representation with emphasis on the question of whether they behave differently in the
inertial or the viscous subranges. The turbulent flow data are obtained by Navier-Stokes solution$ grica 60
with periodic boundary conditions and Re70. Our results complement previous high Re data analysis based
on measured datpA. L. Fairhall, V. S. L'vov, and |. Procaccia, Europhys. Let8, 277 (1998] whose
preference were the larger scales, and the analysis of both experimental and synthetic turbulencéRiata by
Benzi and co-workers, Phys. Rev. LeB0, 3244 (1998; Phys. Fluidsll, 2215(1999]. The inertial range
fusion rule is confirmed and insight is obtained for the conditional averdgedocal dissipation rate condi-
tioned on the velocity fluctuations

PACS numbd(s): 47.27—i

To analyze the structure of turbulent flow fields The two-scale correlatord, are of interest to check the
Lagrangean longitudinalnth order structure functions validity of the so-called fusion ruld$,4]. These describe the
S.(R)=(v"(R)) are of utmost importance. Herg(x,R;t) proper factorization of the genenath order correlation func-
=[u(x+R,t)—u(x,t)]-R/R denotes the longitudinal veloc- tions
ity difference on scal®k. The equation of motioricf. [1,2])
in the case of statistically stationary turbulence Fa(X1,X15X0, X5+ o+ Xn X)) :=(0 (X1,X1) - -0 (X, X)),

8Sy(R,t)=0=—nDy(R,t) + vnI,(R,1), (1) if a subgroup ofp pairs x;—x/ becomes much smaller,
“fuses,” than the remainingh—p pairs, I<p<n. Let the

introduces correlation functions of another type, containindusing pairs have scalg the nonfusing ones scaf If r
local gradient and curvature in addition to the sdaleThe <R, ther eddies are supposed to be statistically independent
(u- V)u nonlinearity in the Navier-Stokes equation gives risefrom the large scale motioR and vice versa. This might
to D,(R,t) (which needs no further specification here be-naively suggest to factorizé,(r,R)~ F,(r) F,-,(R). But
cause we do not consider it in what follomend the viscous this turns out as too naive, because it contradicts the scaling
term vAu leads toJ,=(Auv" *(R)). The Laplacean probes Of the nth order correlation functions under dilation of dis-
the local behavior, whileR is in the inertial range. This tances, unless the scaling exponedts are linear inn.
two-scale character af, becomes explicit if the local cur- Namely, define the scaling exponeidtsby
vature Au is approximated by finite differenceg, u(x)
=[u(x+r)—2u(x)+u(x—r)]/r2. The necessity for this Fa(AFAR)=NEF(1,R). ©)
discretization arises both in numerical turbulence and in the

analysis of measured flow signals. It motivates to study thd '& naive factorization immediately leads 16,=¢,
following more general objects: +{n-p- Thus a relation between the scaling exponents ob-

tains which implies{,= {;n, meaning that onlyone non-

J(r R =1~ 2[u(X+1)—2u(X) +u(X—r trivial scaling exponent exist§‘monoscaling”). To allow
n("R) {fu ) (x)u( )] for the possibility of multiscaling, equivalent to nonlinear
X[u(x+R)—u(x)]""1). (2 dependence of the scaling exponents, the naive factorization

ansatz has to be avoided, because it jeopardizes multiscaling

Herer <R is assumed, and(instead ofr —0) is allowed to by assumption.
vary in the viscous as well as in the inertial Subranges VSR A more general factorization of the multiscale correlation
and ISR. In particular may be below or abovey,, where  functions 7(r,R), denoted as “fusion rule” by L'vov and
7, denotes the transition scale between VSR and ISR in aRrocaccia[3,4], starts with the decompositiof(r,R)
nth order correlation function. It is thesk on which we =]-'p(r)7-'p,n_p(r,R), the second factor being defined by this
concentrate in this note. equation. Here it is assumed that the smattddies move in
the field of the larger, sloweR eddies as they would do also
without the large scale motion, and are described therefore
*Electronic address: grossmann_s@physik.uni-marburg.de by the p correlator of thep smallerr eddiesv;(r). The sta-
"Electronic address: lohse@tn.utwente.nl tistical independence of the small and the large scales is ex-
*Electronic address: reeh@mailer.uni-marburg.de pressed by skipping thedependence of the large scale eddy

1063-651X/2000/6(6)/51957)/$15.00 PRE 61 5195 ©2000 The American Physical Society



5196 SIEGFRIED GROSSMANN, DETLEF LOHSE, AND ACHIM REEH PRE 61

correlation?-‘p +-p(r,R). But even if7:p r-p(R) is assumed to underx as\*n, thus avoiding any prejudice in the factoriza-

be independent of the small scaleit may remember its tion about multiscaling or not multiscaling.

origin from an n-point correlator. Performing the dilation ~ An alternative derivation of EqS) is given in Ref.[7],
transformation of the produdei-"p,n.p of correlation func- based on the multifractal view of the turbulent cascade. It

tions with \ leads to does not explicitly make use of the Navier-Stokes equation.
That approach can even account for higher order corrections
7:p‘n_p()\R):)\{nfépj-p’n_p(R), (4)  to the predictions), see below.

The importance of verifying the factorizatiofifusion
providedr andR are in the same, inertial scaling range. Therule”) (5) is evident. We do this here by applying it to the
scaling behaviof4) is obtained if?-"p,n_p(R) is expressed as J,(r,R) of Eq. (2). Decompose at first"~*(R) in Eq. (2)
the ratio of annth and apth order correlation function, i.e., into [u(x+R)—u(x)Jv" ?(R). Then, next, respect(x
Fonp(R)=S,(R)/S,(R), and therefore the scaling invariant *r)u(x+R) and thus alsai(x)u(x+R) to have correlation

factorization reads 0 as the consequence of the statistical independence of the
velocities at two widely separated positions r, X+ R be-
Fa(r,R)~Sp(r)Sn(R)/Sy(R). ©) causer <R. These correlations are even supposed to vanish
, if the additional factow"~2(R) is included. Thus we are left

The symbol ~ is to be understood as ‘“scaling wise.

Clearly both the left-hand sidd.HS) and the RHS rescale with

Jn(r,R)=r"2([2u%(x) —u(x+r)u(x) —u(x—r)u(x)Jo" 4(R)).

Because of spatial translational invariance this can be rear- J,(r,R)/JI,(r,R)=(C,/C5)S,(R)/S,R), 8)
ranged to give

displayed in Figs. 1 and 2 far=4 and 6, respectively. For
these plots we have divided the LHS of E§) by the ex-

_ . . pected scaling behavid@,(R)/S,(R). Therefore, if Eq.(8)
The objects], are now in the form of a two-scale correlation po|ds, one would have a straight line. Indeed, for the ISR
function to which the factorizatio‘fusion” ) rules can be scalesr =187 and r=365 where Eq.(8) is supposed to

applied and their validity be checked. We do thisifan the hold, we see such behavior, see the upper curves in Figs. 1
ISR according to Eq(5) and later on also for in the VSR. 514 2.

Jn(r,R)=r"%v?(r)v" %[R)), r<R. (6)

Let us first consider the fusion rule fap,<r<R<L, The derivation of Benziet al. [7] of the fusion rules,
both scales being in the ISR (being the outer scalelt says  \yhich is only based on the assumption of an uncorrelated
by Eg. (5) that multiplicative process for the energy cascade, is able to even

give the correction term in E@8). We will show this explic-

In(r,R)=Cpr 285(r)S(R)/Sy(R). (@)

All these correlation functionS,, andS, can easily be com-
puted from a numerical turbulent flow solution of the Navier-
Stokes equation, thé&,(r,R) according to their defining for-
mula(2), and theS, according to their definitiogv"). If nis
odd it makes a difference if" or [v|"=(\v?)" is used, see
Ref. [5]; we distinguish these cases §s and S} . Typical
averaging times are about 100 large eddy turnovers. Forcing
is on the largest scale. The periodicity length of the box then
is 27L. Lengths are nondimensionalized with this length 0.6 . . ‘
Time is nondimensionalized with_¢/€)*. Thus the nondi- 0.5 1.0 1.5 20
mensional energy dissipation rate per mass becosnek. logy, (R/m)
The(Qimens.ionl'es)svelocities are always divided by the rms FIG. 1. The upper curves arén a double logarithmic plot
vglomty, which in our flow turns out to ba,,= 1.4Q. The_: 34(r,R)3; X(r,R)/S,(R)S; (R) versusR/7. Here 7 is (€)Y
viscous length scale for the second order correlationg,is  ange=1"in our units. From top to bottom/z=3.6, 18, and 36,
=7=(v%€)"*=9x10"°L. For the averaging the vectors  thys from VSR to ISR. The symbolé indicate that here=R, i.e.,
andR are chosen as(1,0,0) andR(1,0,0). The isotropy of  only at the right of¢ the assumption<R can be considered #at
the flow has carefully been checked. For more details segast approximatelyfulfilled. The lower triple of curves shows the
Ref. [6]. analogous information if,(r,R)J, *(r,R)/Ss(R)S; *(R) is plotted
To concentrate on the dependence on one variable scalen the ordinate, i.e., compensation with the VSR fusion (L& is
we calculated the ratios chosen. The inertial range startsRity= O(10).

0.0

IOg]o (J4/J2)’ COmpensated

--------- - VSR compensated
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FIG. 2. The corresponding results foe=6 as in Fig. 1 for the
casen=4. JG(r,R)Jz_l(r,R) is divided by the ISR fusion rule pre-
diction SB(R)Sgl(R) in the upper triple of curves and by the VSR
fusion rule predictionS7(R)S§1(R) in the lower triple. Againr
<R holds on the right of the symbolé . The VSR-ISR transition
is atR/ »=0(10).

FIG. 3. Compensated pIofthgllsn,z as functions oR/ 7 for
n=4 (lower) andn=6 (uppe), choosingr =3.67, 187, and 36.
Again ¢ indicates wher&R=r; the relevant range<R is towards
the right. The full straight lines represent the slopegtu/9
=—0.093 and—8u/9= —0.187 foru=0.21(taken from[6] as an
appropriate fit value in the K62 intermittency model, /J, clearly

itly for the case ofl,(r,R): Following Ref.[7] and applying seems to behave F(R)/S,(R) instead ofS,5(R).

the so called “Ward identity,” we first get the exact relation . . -
As a consequence scaling-wise we havgé, (r)

84(R—r)=S4(R)+S4(r)—47-“1,3(r,R)—47-“3V1(r,R) xSp(r)/Sn-p(r), altogether the alternative fusion rule
L6741 R). © FalF R~ Sn (RSN Syp(F). (12

- oV~ In contrast to the original factorization Ré~¢p this one
In the limit Of_ r/R—0 such that S“(RJ) §4(R)(1 scales aR‘r-p, in both cases the glob® and rscaling being
—¢{,r/R) and with Eq.(10) of Ref. [7] for F3,=F; 3 (for

i . . _conservedx\¢n. There is no difference in case of monos-
which the fusion rules erroneously give 0 as elaborated i

li hile f Itiscali — h -
Ref.[7]) we finally obtain the higher order correction in Eq. '?S:%lonngs, \éviffle? or multiscalingZn.p # £n = p» both decompo
(8), namely, ;

Applying Eq.(12) to J, of Eq. (6) we find instead of Eq.
3u(1,R)_ Ca Sy(R)[ (rsz(R)) (%(V)SZ(R)> @
LR G &R ClRsm TSRS

O( 34(F)Sz(R))
S4(R)Sy(r)

The first two correction terms on the RHS are—up to inter-
mittency corrections—order of (R)Y3, the last one is order with &

2/3 . . . .
of (r/R)“". Indeed, qualitatively we see such a correction ingjg,re 3 presents compensated plots according to this alter-

Fig. 1, upper, for ther/7=3.6 curve: The smalleR, the  ,a4ve |SR fusion rule. Apparently, the original fusion rules
larger the correction to the plated&or the other two curves Eq. (5) and (8), respectively, are superior, the alternatives

the conditionr/R<1 used in the derivation of E¢L0) is not (12) and (14) can be discarded.
fulfilled throughout] Unfortunately, the scaling exponents of One can understand the different slopes in Fig. 3 relative

the .correct.ion terms cannot be extracted due to the shogt, Figs. 1,2(upped even quantitatively. The difference of the
scaling regime. slopes for the two ISR fusion rules &={,—{>—{n_». It

In order to judge whether the horizontal lines in Figs. 1fu|ly indicates multiscaling, becaus® =0 in the monoscal-

and 2 are incidental, we have studied in addition anothef, " c,qe K41. For simplicity we consider the multiscaling
plausible, alternative factorization formula that might Sta”dmodel K62 (see Refs[8,9]) ¢,=n/3—un(n—3)/18 and
. y n

instead qf Eq(5). Apparently,r andR have not been treaf[ed find 8,= — (2/9)(n—2). In particulars,=0, 8,= — 4ul9,
symmetrically, when factorizingr,(r,R). If_one argues dif- and = — 8u/9. These slopes are marked in Fig. 3 and seem
ferentl);]than before that th&lp Ie:jrger Qfddr:es, biﬁlaujg, they 15 pe consistent with the empirical slopes in the compensated
carry the energy, are correlated as If the smalleddies o5 of the alternative fusion rule. Given the small Rey-

were  not present, the  decomposition/n(r.R)  nolds number, one can of course argue whether there is scal-
= Fn-p(R)Fpn(r,R) would be natural. As before, statistical ing at all.

In(r,R)cr 28,(1) S 25(1) S —o(R). (13)
(10) Accordingly

In(r,RI(r,R)=Cp(r)S,_2(R), (14)

n(F) % Sn(r)/[Sx(r)Sn-2(r) ], sinceSp(R) =Sp(r) =1.

independence of the andR eddies lets one skip thig de- We conclude that the scaling of tiep large R eddies is
pendence inF, ,. The conservation of the global scaling well affected by the presence of tipesmallerr eddies, this
x\¢n then leads to effect being due completely to multiscaling. In contrast, the

. . smallr eddies are curling as if they were free, uneffected by
Fon(Nr)=Nn" by (1), (11)  the large eddies in whose field they move.
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The factorization rulg(7) for the choice#n,<r<R has
been confirmed previously already with measured &b
[In Ref. [10] the J, erroneously have an additional factor
n/2; for the structure functions th&} (R) are used.Due to
restrictions in the small resolution of the measured data, a
verification of the VSR fusion rules was not possible. This
was another motivation for the present numerical work.

We now consider the easily accessible case whinin
the VSR, i.e.r/»<O(10). The argument for the factoriza-
tion (5) was based on strictly keeping the scaling exponent
¢n of F, also in its factorized form. We tacitly assumed that Y 10 5 -
the smallr as well as the larg® scaling exponents are the log,, (R/)
ISR type{,,, which is natural if both small and largeR are
in the ISR. Ifr e VSR, its scaling exponen, is regular, FlGi 4. The VSR factorizatior(lS), i.e., Jadyt divided by
instead, {,—p. Then the homogeneity exponent of S5S; ~ (upper triplg or by S;S; ~ (lower triple). The latter is the

= . . . : B same as in Fig. 1. For more information see the caption of Fig. 1.
Fpn-p(R) Ender rescaling with\ is Zn.p mSt.ead Of¢n-Lp- . While the two triples of curves are structurally similar, there are
ThereforeF, .,(R) can no longer be described by the ratio yitferences in detail if theS* or the S, are taken.

Sh(R)/S,(R) becauseR is in the ISR and thus the denomi-
nator has the scaling behavidy,, but notp as desired.
Therefore the ISR factorization rul@) is expected to be-
come invalid ifr is below~10%. This is supported by Figs.
1 and 2(lower).

Incidentally, if bothr and R are in the VSR they both
have regular monoscaling exponeptandn-p. But here the
argument of statistical independence due R ceases to
be valid, i.e., no factorization is possible anymore; and it is
not necessary either, because there is reg\Relependence. the case of the inertial range factorization rule, since the

If r <y, <R<L, denoted as ther}VSR case, two com- .involved n=2,4,6 are all even. But the VSR factorization

peting factorizations'are at hand. One of them is derived 'QlS) comprises odah. As Figs. 4 and 5 show there are noti-
Refs.[2] and[1], saying cable differences in the details of the respective upper and
lower triples, but the curves are structurally the same.

An argument leading to Eq15) is start with the ISR
fusion rule(7) and reduce continuously to submerge in the
VsRr eventually. That means, keep tRadependence of the
RHS and fixr at the crossover from the ISR to the VSR, i.e.,

log,, (J,/J,), compensated

]

o

w

I

i

i

w

o

o

Again, we use compensated plots, this time dividihgJ,

by the expected VSR-scaling behavior, i.e., the right hand

side of Eq.(15). If that holds, one would again expect a

straight line. Indeed, if =3.67, i.e.,r is in the VSR, the line

is straighter than for values in the ISR, but the result is not

completely conclusive because of the low Reynolds number.
We also present Figs. 4 and 5 in order to identify possible

ifferences ifS) is taken instead o§,,. This is irrelevant in

Jn(r,R)=CSy+1(R)/S5(R). (15)

The other one, which strictly adheres to the invariance of th
total F,, scaling behavior under factorization reads

; -2 -2 0 itis i
. S,(r) Sy(R) Sy(r) Sy(R) fix r atO(»;,). Thenr ~<S,(r) = 5, “7,?. Now it is important
In(rR)=Cp— T~ 5 2o that the crossover scalg, not only depends on the ordar
r R r° S(R) of the moment but also on the sc&esee[1], according to
re VSR, Re ISR, r<R. (16 7= n(RIL),
This factorization is based on the assumption that ritie with

order correlation has the homogeneity expongnirrespec-
tive of r,R being in the same or in different subranges. The
RHS has scaling exponetit, because,(Ar)«\?S,(r) for
re VSR and alsaS5(AR) =\2S5(R) for Re ISR, sinceS,
«R from the Howard—van Kanan—Kolmogorov structure
equation[More generallyF,(r,R)>=S,(r)S,(R)/S5(R).]

There is not much difference between Eb) and(16)
in the smallr dependence, becau$g(r)e«r? for smallr.
The factorization(15) says that the LHS is independentrof
oncer is less thany. It furthermore states that the—2
factors ofv(R) in J,, scale with exponeng,,,;—1 or, if

log,, (J/J,), compensated

Jn()\r,)\R)z)\gan(r,R) theﬂzn=§n+1—1- 17 05 110 1:5 210

. . : . - . log,, (R/m)
Since in the equation of motion thie-0 limit of J,(r,R) is

needed, the VSR factorizatidtifusion™ ) rule is of consid- FIG. 5. The VSR factorization(15) of JgJ,* divided by

erable importance. The quality of E@5) for numerical tur-  S5S%~* (upper triple or by S;S;* (lower triple). Again there are
bulence is tested in Figs. 1 and 2, lower triples respectivelydifferences in the detailed behaviors between upper and lower.
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Xn=({nt 3= Lnr1— §2)1(2—{5). (18

In particular, »,= 7 as it should. TheR dependence of the
7, as well as thein dependence originates from multiscal-
ing as the signature of intermittency. In K41 one kgs 0
and n,= n for all n. Relation(18) implies

rZSZ(r)|r%nnocR§n+1+§2—{n—£3, (19
which when used together with E{) leads to
Jo(r=p,R)eRn16s, (20

This is just Eq.(15). For monoscalindlinearn dependence
this coincides with Eq(7) at r = #. It therefore is of high

Egs. (7) and (15), the fusion rules in theé-ISR andr-VSR
cases, with convincing significance.
Bothr-VSR factorization rule$15) and(16) might not be

considered as based on safe arguments. It therefore see

adequate to study the special case?2 separately, where

everything can be evaluated explicitly. Only the statistical

spatial homogeneity of the flow is used. Start with E2),
choose n=2 and find r2J,(r,R)=(u(x+r)u(x+R)
—2u(X)u(x+R) + u(x—r)u(x+R) — u(x+r)u(x) + 2u?(x)
—u(x—r)u(x)). Employing translational invariance, e.g.,
u(x+ru(x+R)=u(x)u(x+R—r), etc., straightforwardly
leads to the relation

1
SR~ 5 (S(R+T)

|

In the limit r—0 one can expan&,(r) and[---] up to
second order im and finds

Jz(r,R)=r2+Sz(r)+

+S5,(R=1)) (21)

1d%s,

Jo(r,R)=((d,up)?) —

If Ris in the ISR, the second term becomes smalRés 2,
i.e., roughly<R~*3 and the first, constant term remains.
This is compatible with Eq.(15 for n=2, if C,
=((d1uy)?), while Eq. (16) is excluded because it ap-
proaches 0 ascR™ 3. Also the ISR fusion rulg7) for n
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R to neglect the second term, well reproducesr8R fu-
sion rule(7) but does not coincide with theVSR rule (15)
as it should, since—0 is considered.

To analyze the differences between the ISR and the VSR
factorization rules further we now consider the averatjs-
cretized curvatureA,u under the condition that the-eddy
velocity differencev (x,R;t) has the valueg. We denote
this conditional average 44 ,u|vg). It allows us to compute
the J,(r,R) from (2) by using thev z-probability densities,

Jn<r,R>=f<ArulvR>v2‘1PR<vR>dvR. (24)

Here Pg(vR) is the (unconditionedl probability density to
find the R-eddy velocity differencevg, which can be ob-

tained directly from the numerical solution for each chosen

eddy sizeR, on whichPg depends.
The conditional averages\,u|vg) can be calculated via

unconditioned probabilities. It is

ms

P r(K,UR)

d
Pr(op)

K.

(25

(Aru|vR>=f Pr’R(K|UR)KdK:J

Here P, r(x,vR) is the common joint probability density to

find the field curvaturec=A,u andthe R-eddy velocityvg.
The fraction has the meaning of the conditional probability
density P, r(k|vR)-

The fusion ruleg7) and (15) follow immediately if the
conditional curvature averages have linear or quadratic de-
pendence on the conditioning eddy fiaelg, as was indi-
cated in Refs[1,10]. In ther-ISR casen<r<R the linear
ansatz

(Arulor) =[Cyr ~?Sx(r)IS(R) Jur
=[32(r.R)/S(R) Jur

inserted into Eq(24) immediately leads to Eq7). The qua-
draticvg dependence

(26)

(Avulvg)=[C,/S3(R) v (27)

in turn gives ther-VSR factorization(15). To be more pre-
cise, the ansat27) is a sufficient condition to imply Eq.
(15). Alternatively, as argued in Reff11], (A u|vg) may be

an infinite series irvg, of which we shall study the begin-

=2 is reproduced to leading order. On the other hand, th@ing, see Eq(28). The dependencig26) and(27) onvy are

functional dependence df(r,R) on bothr andR does not

change ifr passes from the ISR to the VSR. The only rel-

evant property is <R.
A generalization of Eq(22) for n>2 has been derived in
Ref. [7].

S(R) 1 d?

In(1=0R=Col(au0) g s~ —

S,(R), Re ISR.
(23

so markedly different that the conditional average represen-
tation (24) seems qualified to become a sensitive check. If
Egs. (26) and (27) could be proven to hold, the validity of
the fusion rules(7) and (15) in the r-ISR and ther-VSR
cases were strongly supported.

We have determined the conditional averagasu|vg)
numerically viaP, r(«,vg) and Pr(vg) from Eq. (25 for
two values ofr, one in the ISRy =367, the other one in the
VSR, r=23.67, as functions o for various fixedR. The
curves are displayed in Figs. 6 and 7.

If nis large enough, the second term does no longer decrease While the linear dependence ¢4, u|vg) nicely confirms

with increasingR. It grows instead. But still its size shrinks
relative to the first term aR%2~?—0. Forn=2 Eq.(22) is
recovered. Note that the generalizati@3), for large enough

the ISR fusion rulg7), the completely missing quadratig
dependencé27) excludes the possibility to understand Eg.
(15) from a simple product ansatz for the conditional prob-
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FIG. 6. The conditional averagéA,ulvg) in multiples of (b) //’f/"'
Jo(r,R)/S,(R) versusvg in multiples of u,{=1.40) in a double 2 04l 7
logarithmic plot.r =367 is in the ISR. The large eddy scaR =) /:;f’
varies through 36,547,727, all in the ISR or even in the stirring i 4 r=3.6n
subrange. The expected linear beha¥®8) is evident. The slope of = Vs from definition .
. . . = 02+ 4/ - from cond. avg. (cubic)
the linear part is 1, as it should. = Y from cond. avg. (linear)
/l/ 5 "
3 4 T
ability (A ulvg), leaving the possibility of an infinite series
expansion as stated in R¢1L1] to be tested. The alternative 0.0 ' ‘ :
. . . 0.5 1.0 15 2.0
(16), on the other hand, is consistedi S, (R). Linear laws log,. (RM)
10

for the conditional averages have been discussed also in the
context of passive scalar advectiptl—15. For the choice FIG. 8. (a) Double logarithmic plot ofl,(r,R) versusR/» for
re ISR this linearvg dependence has been studied forr=365 in the ISR. The directly calculated, from the definition
Navier-Stokes turbulence by Fairhadit al. [10]. In the (2) and that from the conditional average representatis very
present paper we add data BivSR conditional averages.  well agree, for both the linear and the linear plus cubic interpolation
We can check the direct methd#) to calculate thel, (28) of (A, ulvR). (b) J,(r,R) versusR/ 5 if r=3.67 is in the VSR.
and the conditional average representatia$ against each We can compare with the constant value(6#;u;)?), the dotted
other, see Figs. 8 and 9 for the cases2 and 3. We have horizontal line, as given by Eq22). Here the mutual agreement is
also evaluated, andJs and have found similar agreement Not very satisfactoryr = 3.6z might still not be in the asymptotic
between the various methofisgs.(2) or (24)] as in the case ranger—0.
J,. The corresponding curves are not displayed here. . _ o L
To a good approximation the conditional average of thd€d the conditional averages with the beginning of a series in
field curvatureA,u depends linearly ong, irrespective of UR»
being in the ISR or in the VSR, above or beloyv This
agrees nicely with the observation in EQ1) that » is no

explicitly relevant quantity fod,(r,R). _ ~ No even power invg is present, because the numerically
clearly uneven. Inserting E28) into Eq. (24) leads to

(Aulvr)=f1(r,R)vg+f5(r,R)v3. (28)

5
VS 18 In(r,R)=F1(r,RIS(R) +f3(r,R)Sy:2(R). (29
—— 36
———_ 54 If both r andR are in the ISR, the second term is small, see

_____ 72 Fig. 6 and Table I, and the ISR factorizatif obtained. If
r e VSR the linear and linear plus cubic interpolations differ
from each other and also frody from the definition(2), see
Figs. 8 and 9. Table | offers numbers fdg(r,R) and

(<A, u | ve>iu,, ) S,(R)AJ(r,R)
o

fa(r,R).
r=3.6n The series expansion of, according to the numerical
-5 L 4 5 5 5 , findings and to the odd power expansion of the conditional

averages differs in its symmetry under reflection of the eddy
velocity, v(R)— —v(R), from the VSR fusion rulg15). It

FIG. 7. The conditional average,ulvg) if r=3.67 is in the ~ Pehaves as<1)", while Eq.(15) goes as ¢ 1)""% It thus
VSR; the same values & as in Fig. 5. With convincing evidence 1S Not yet clear, how the VSR rulé,~S; ,;(R)/R can be
it is not quadratic with respect tog but linear, too, at least for reconciled with the conditional average results. Further
negativevg and up to~3u,, for positive onesu,, by the way, analySiS is Clearly necessary to get a SUfﬁCiently firm base for
is 1.40. We believe, this asymmetry is a consequence of insufficierifie r-VSR fusion properties.
statistics for the large fluctuatiohsg| and has not necessarily sig- If the flow field curvatureA,u is not discretized the re-
nificance. sulting correlation function has some resemblance to

VR / urms



PRE 61

-0.5
(@
-1l
—3
E
2
E, 15t
;Iv'v , | r=36mn
= from definition
2 | /- from cond. avg. (cubic)
B Y S O from cond. avg. (linear)
0.5 1 15 2
log,, (R/m)
0
—3
- E =05t
2
&
:;’s
_'; -1t from definition
s | - from cond. avg. {cubic) p
e T — from cond. avg. (linear) \‘
i
-1.5 : ! .
0.5 1 15 2

log,, (RM)
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MULTISCALE CORRELATIONS AND CONDITIONAL . ..

5201

TABLE I. Representative values for the coefficierit{r,R)
and f5(r,R) of the conditional average interpolation formy2s).
Upper: the ISR case=367; lower: the VSR choice =3.67. The
cubic term is markedly larger if is in the VSR.

R/ 36 54 72

f, 1.12 0.852 0.702
falf, 0.00221 0.00184 0.00166
R/ 7 18 36 54 72

f, 7.90 3.97 3.00 2.58
falf, 0.0167 0.00685 0.00306 0.00274

=220 and 300, and found to be valid within reasonable ap-

proximation in a compensated plot. It seems worthwhile to

also study the conditional average representation which as
we found may be more sensitive.

To conclude, the ISR factorization or “fusion” rules are
shown to be “valid” under various different checks. But we
also caution the reader: In Rdf7] it has been pointed out
that in order to have a very clear test of the fusion rule
predictions, one has to have ,Re2000. There is no change
in any numerical study to achieve this. However, the benefit
of numerical studies can be good resolution towards small
scales. We find that the small scal&/SR fusion rules are

r=3.6» (b). With the cubic fit for the conditional average there is far less clear. The corresponding conditional probabilities are
good agreement between the direct and the conditional average calbjects to study these fusion rules more sensitively. The con-

culations ofJ;. See also Fig. 8.

ditional average field curvature on scaleA,u, essentially
depends linearly on the conditioning eddy velocity fluctua-

(ev""Y(R)), wheree(x,t) denotes the local dissipation rate tion, irrespective of less than or beyong).

per mass. In Ref 2] so-called bridge relations for such ob-

jects have been advocated, saying here that
(e0" H(R))= Sy 2(R)/IR.

This relation compares with the-VSR factorization rule
(15). But note,e in Eq. (30) contains two factors ofl and is

(30

It is our pleasure to acknowledge stimulating discussions
with A. Fairhall, I. Procaccia, L. Biferale, and F. Toschi.
This work was supported by the German-Israeli Foundation
(GIF), and by the DFG through Grant No. SFB185-D3. It
also is part of the research program of the Stichting voor
Fundamenteel Onderzoek der Mate(lgOM), which is fi-

a (gradientu)—squared and thus is a different correlation nancially supported by the Nederlandse Organisatie voor
function asJ,,. The bridge relation30) has recently been Wetenschappelijk OnderzoelNWO). Computer time was

checked[16] by numerical solution on a 5%2Jattice, Rg

supplied by the NIC in Jich.

[1] A.L. Fairhall, V.S. L'vov, and I. Procaccia, Europhys. Let8,
277 (1998.

[2] V.S. L'vov and I. Procaccia, Phys. Rev. L€etZ, 3541(1996.

[3] V.S. L'vov and I. Procaccia, Phys. Rev. Let6, 2898(1996.

[4] V.S. L'vov and I. Procaccia, Phys. Rev.5, 6268(1996.

[5] S. Grossmann, D. Lohse, and A. Reeh, Phys. Re’6,55473
(1997.

[6] S. Grossmann, D. Lohse, and A. Reeh, Phys. FI8id3817
(1997).

[7] R. Benzi, L. Biferale, and F. Toschi, Phys. Rev. L&, 3244

(1998; R. Benzi, L. Biferale, G. Ruiz-Chavarria, S. Ciliberto,

and F. Toschi, Phys. Fluidkl, 2215(1999.
[8] A.N. Kolmogorov, J. Fluid Mech13, 82 (1962.

[9] A.M. Obukhov, J. Fluid Mech13, 77 (1962.

[10] A.L. Fairhall, B. Dhruva, V.S. L'vov, |. Procaccia, and K.R.
Sreenivasan, Phys. Rev. Let9, 3174(1997.

[11] E.S.C. Ching, V.S. L'vov, E. Paodivilov, and |. Procaccia,
Phys. Rev. E54, 6364(1996.

[12] V. Yakhot and Y. Sinai, Phys. Rev. Let3, 1965(1991).

[13] P. Kailasnath, K.R. Sreenivasan, and J.R. Saylor, Phys. Fluids
A 5, 3207(1993.

[14] R.H. Kraichnan, Phys. Rev. Leff2, 1016(1994.

[15] A.L. Fairhall, O. Gat, V.S. L'vov, and I. Procaccia, Phys. Rev.
E 53, 3518(1996.

[16] A. Ceani and D. Biskamp, Europhys. Lefs, 332(1999.



