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Multiscale correlations and conditional averages in numerical turbulence
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The equations of motion for thenth order velocity differences raise the interest in correlation functions
containing both large and small scales simultaneously. We consider the scaling of such objects and also their
conditional average representation with emphasis on the question of whether they behave differently in the
inertial or the viscous subranges. The turbulent flow data are obtained by Navier-Stokes solutions on a 603 grid
with periodic boundary conditions and Rel570. Our results complement previous high Re data analysis based
on measured data@A. L. Fairhall, V. S. L’vov, and I. Procaccia, Europhys. Lett43, 277 ~1998!# whose
preference were the larger scales, and the analysis of both experimental and synthetic turbulence data by@R.
Benzi and co-workers, Phys. Rev. Lett.80, 3244 ~1998!; Phys. Fluids11, 2215 ~1999!#. The inertial range
fusion rule is confirmed and insight is obtained for the conditional averages~the local dissipation rate condi-
tioned on the velocity fluctuations!.

PACS number~s!: 47.27.2i
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To analyze the structure of turbulent flow field
Lagrangean longitudinalnth order structure functions
Sn(R)5^vn(R)& are of utmost importance. Herev(x,R;t)
5@u(x1R,t)2u(x,t)#•R/R denotes the longitudinal veloc
ity difference on scaleR. The equation of motion~cf. @1,2#!
in the case of statistically stationary turbulence

] tSn~R,t !5052nDn~R,t !1nnJn~R,t !, ~1!

introduces correlation functions of another type, contain
local gradient and curvature in addition to the scaleR. The
(u•“)u nonlinearity in the Navier-Stokes equation gives r
to Dn(R,t) ~which needs no further specification here b
cause we do not consider it in what follows! and the viscous
termnDu leads toJn5^Duvn21(R)&. The Laplacean probe
the local behavior, whileR is in the inertial range. This
two-scale character ofJn becomes explicit if the local cur
vature Du is approximated by finite differences,D ru(x)
5@u(x1r )22u(x)1u(x2r )#/r 2. The necessity for this
discretization arises both in numerical turbulence and in
analysis of measured flow signals. It motivates to study
following more general objects:

Jn~r ,R!5r 22^@u~x1r !22u~x!1u~x2r !#

3@u~x1R!2u~x!#n21&. ~2!

Herer !R is assumed, andr ~instead ofr→0) is allowed to
vary in the viscous as well as in the inertial subranges V
and ISR. In particularr may be below or abovehn , where
hn denotes the transition scale between VSR and ISR in
nth order correlation function. It is theseJn on which we
concentrate in this note.
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The two-scale correlatorsJn are of interest to check the
validity of the so-called fusion rules@3,4#. These describe the
proper factorization of the generalnth order correlation func-
tions

Fn~x1 ,x18 ;x2 ,x28 ; . . . ;xn ,xn8!ª^v~x1 ,x18!•••v~xn ,xn8!&,

if a subgroup ofp pairs xi2xi8 becomes much smaller
‘‘fuses,’’ than the remainingn2p pairs, 1,p,n. Let the
fusing pairs have scaler, the nonfusing ones scaleR. If r
!R, ther eddies are supposed to be statistically independ
from the large scale motionR and vice versa. This migh
naively suggest to factorizeFn(r ,R)'Fp(r )Fn2p(R). But
this turns out as too naive, because it contradicts the sca
of the nth order correlation functions under dilation of di
tances, unless the scaling exponentszn are linear in n.
Namely, define the scaling exponentszn by

Fn~lr ,lR!5lznFn~r ,R!. ~3!

The naive factorization immediately leads tozn5zp
1zn2p . Thus a relation between the scaling exponents
tains which implieszn5z1n, meaning that onlyone non-
trivial scaling exponent exists~‘‘monoscaling’’!. To allow
for the possibility of multiscaling, equivalent to nonlinearn
dependence of the scaling exponents, the naive factoriza
ansatz has to be avoided, because it jeopardizes multisc
by assumption.

A more general factorization of the multiscale correlati
functionsFn(r ,R), denoted as ‘‘fusion rule’’ by L’vov and
Procaccia @3,4#, starts with the decompositionFn(r ,R)
5Fp(r )F̃p,n2p(r ,R), the second factor being defined by th
equation. Here it is assumed that the smallr eddies move in
the field of the larger, slowerR eddies as they would do als
without the large scale motion, and are described there
by thep correlator of thep smallerr eddiesv i(r ). The sta-
tistical independence of the small and the large scales is
pressed by skipping ther dependence of the large scale ed
5195 ©2000 The American Physical Society
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5196 PRE 61SIEGFRIED GROSSMANN, DETLEF LOHSE, AND ACHIM REEH
correlationF̃p,n-p(r ,R). But even ifF̃p,n-p(R) is assumed to
be independent of the small scaler, it may remember its
origin from an n-point correlator. Performing the dilatio
transformation of the productFpF̃p,n-p of correlation func-
tions with l leads to

F̃p,n-p~lR!5lzn2zpF̃p,n-p~R!, ~4!

providedr andR are in the same, inertial scaling range. T
scaling behavior~4! is obtained ifF̃p,n-p(R) is expressed as
the ratio of annth and apth order correlation function, i.e.
F̃p,n-p(R)}Sn(R)/Sp(R), and therefore the scaling invarian
factorization reads

Fn~r ,R!;Sp~r !Sn~R!/Sp~R!. ~5!

The symbol ; is to be understood as ‘‘scaling wise.
Clearly both the left-hand side~LHS! and the RHS rescale
ea

n
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e
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underl aslzn, thus avoiding any prejudice in the factoriza
tion about multiscaling or not multiscaling.

An alternative derivation of Eq.~5! is given in Ref.@7#,
based on the multifractal view of the turbulent cascade
does not explicitly make use of the Navier-Stokes equati
That approach can even account for higher order correct
to the prediction~5!, see below.

The importance of verifying the factorization~‘‘fusion
rule’’ ! ~5! is evident. We do this here by applying it to th
Jn(r ,R) of Eq. ~2!. Decompose at firstvn21(R) in Eq. ~2!
into @u(x1R)2u(x)#vn22(R). Then, next, respectu(x
6r )u(x1R) and thus alsou(x)u(x1R) to have correlation
0 as the consequence of the statistical independence o
velocities at two widely separated positionsx1r, x1R be-
causer !R. These correlations are even supposed to van
if the additional factorvn22(R) is included. Thus we are lef
with
Jn~r ,R!5r 22^@2u2~x!2u~x1r !u~x!2u~x2r !u~x!#vn22~R!&.
r

SR

s. 1

ted
ven
Because of spatial translational invariance this can be r
ranged to give

Jn~r ,R!5r 22^v2~r !vn22~R!&, r !R. ~6!

The objectsJn are now in the form of a two-scale correlatio
function to which the factorization~‘‘fusion’’ ! rules can be
applied and their validity be checked. We do this forr in the
ISR according to Eq.~5! and later on also forr in the VSR.

Let us first consider the fusion rule forhn!r !R!L,
both scales being in the ISR (L being the outer scale!. It says
by Eq. ~5! that

Jn~r ,R!5Cnr 22S2~r !Sn~R!/S2~R!. ~7!

All these correlation functionsSn andS2 can easily be com-
puted from a numerical turbulent flow solution of the Navie
Stokes equation, theJn(r ,R) according to their defining for-
mula ~2!, and theSn according to their definition̂vn&. If n is
odd it makes a difference ifvn or uvun5(Av2)n is used, see
Ref. @5#; we distinguish these cases asSn and Sn* . Typical
averaging times are about 100 large eddy turnovers. For
is on the largest scale. The periodicity length of the box th
is 2pL. Lengths are nondimensionalized with this lengthL.
Time is nondimensionalized with (L2/e)1/3. Thus the nondi-
mensional energy dissipation rate per mass becomese51.
The ~dimensionless! velocities are always divided by the rm
velocity, which in our flow turns out to beurms51.40. The
viscous length scale for the second order correlations ish2
[h5(n3/e)1/45931023L. For the averaging the vectorsr
andR are chosen asr (1,0,0) andR(1,0,0). The isotropy of
the flow has carefully been checked. For more details
Ref. @6#.

To concentrate on the dependence on one variable s
we calculated the ratios
r-

ng
n

e

le,

Jn~r ,R!/J2~r ,R!5~Cn /C2!Sn~R!/S2~R!, ~8!

displayed in Figs. 1 and 2 forn54 and 6, respectively. Fo
these plots we have divided the LHS of Eq.~8! by the ex-
pected scaling behaviorSn(R)/S2(R). Therefore, if Eq.~8!
holds, one would have a straight line. Indeed, for the I
scalesr 518h and r 536h where Eq.~8! is supposed to
hold, we see such behavior, see the upper curves in Fig
and 2.

The derivation of Benziet al. @7# of the fusion rules,
which is only based on the assumption of an uncorrela
multiplicative process for the energy cascade, is able to e
give the correction term in Eq.~8!. We will show this explic-

FIG. 1. The upper curves are~in a double logarithmic plot!
J4(r ,R)J2

21(r ,R)/S4(R)S2
21(R) versusR/h. Here h is (n3/e)1/4

and e51 in our units. From top to bottomr /h53.6, 18, and 36,
thus from VSR to ISR. The symbolsL indicate that herer 5R, i.e.,
only at the right ofL the assumptionr !R can be considered as~at
least approximately! fulfilled. The lower triple of curves shows the
analogous information ifJ4(r ,R)J2

21(r ,R)/S5(R)S3
21(R) is plotted

on the ordinate, i.e., compensation with the VSR fusion rule~15! is
chosen. The inertial range starts atR/h5O(10).
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itly for the case ofJ4(r ,R): Following Ref.@7# and applying
the so called ‘‘Ward identity,’’ we first get the exact relatio

S4~R2r !5S4~R!1S4~r !24F̃1,3~r ,R!24F̃3,1~r ,R!

16F̃2,2~r ,R!. ~9!

In the limit of r /R→0 such that S4(R2r )'S4(R)(1
2z r r /R) and with Eq.~10! of Ref. @7# for F̃3,15F̃1,3 ~for
which the fusion rules erroneously give 0 as elaborated
Ref. @7#! we finally obtain the higher order correction in E
~8!, namely,

J4~r ,R!

J2~r ,R!
5

C4

C2

S4~R!

S2~R!F11OS rS2~R!

RS2~r ! D1OS S3~r !S2~R!

S3~R!S2~r ! D
1OS S4~r !S2~R!

S4~R!S2~r ! D G . ~10!

The first two correction terms on the RHS are–up to int
mittency corrections—order of (r /R)1/3, the last one is orde
of (r /R)2/3. Indeed, qualitatively we see such a correction
Fig. 1, upper, for ther /h53.6 curve: The smallerR, the
larger the correction to the plateau.@For the other two curves
the conditionr /R!1 used in the derivation of Eq.~10! is not
fulfilled throughout.# Unfortunately, the scaling exponents
the correction terms cannot be extracted due to the s
scaling regime.

In order to judge whether the horizontal lines in Figs.
and 2 are incidental, we have studied in addition anot
plausible, alternative factorization formula that might sta
instead of Eq.~5!. Apparently,r andR have not been treate
symmetrically, when factorizingFn(r ,R). If one argues dif-
ferently than before that then-p larger eddies, because the
carry the energy, are correlated as if the smallerr eddies
were not present, the decompositionFn(r ,R)
5Fn-p(R)F̌p,n(r ,R) would be natural. As before, statistic
independence of ther and R eddies lets one skip theR de-
pendence inF̌p,n . The conservation of the global scalin
}lzn then leads to

F̌p,n~lr !5lzn2zn-pF̌p,n~r !. ~11!

FIG. 2. The corresponding results forn56 as in Fig. 1 for the
casen54. J6(r ,R)J2

21(r ,R) is divided by the ISR fusion rule pre
diction S6(R)S2

21(R) in the upper triple of curves and by the VS
fusion rule predictionS7(R)S3

21(R) in the lower triple. Againr
,R holds on the right of the symbolsL. The VSR-ISR transition
is at R/h5O(10).
in

-

rt

r
d

As a consequence scaling-wise we haveF̌p,n(r )
}Sn(r )/Sn-p(r ), altogether the alternative fusion rule

Fn~r ,R!;Sn-p~R!Sn~r !/Sn-p~r !. ~12!

In contrast to the original factorization;Rzn2zp this one
scales asRzn-p, in both cases the globalR and rscaling being
conserved,}lzn. There is no difference in case of mono
caling, while for multiscaling,zn-pÞzn2zp , both decompo-
sitions differ.

Applying Eq. ~12! to Jn of Eq. ~6! we find instead of Eq.
~7!,

Jn~r ,R!}r 22Sn~r !Sn22
21 ~r !Sn22~R!. ~13!

Accordingly

Jn~r ,R!/J2~r ,R!5Ĉn~r !Sn22~R!, ~14!

with Ĉn(r )}Sn(r )/@S2(r )Sn22(r )#, sinceS0(R)5S0(r )51.
Figure 3 presents compensated plots according to this a
native ISR fusion rule. Apparently, the original fusion rul
Eq. ~5! and ~8!, respectively, are superior, the alternativ
~12! and ~14! can be discarded.

One can understand the different slopes in Fig. 3 rela
to Figs. 1,2~upper! even quantitatively. The difference of th
slopes for the two ISR fusion rules isdn5zn2z22zn22. It
fully indicates multiscaling, becausedn50 in the monoscal-
ing case K41. For simplicity we consider the multiscalin
model K62 ~see Refs.@8,9#! zn5n/32mn(n23)/18 and
find dn52(2m/9)(n22). In particulard250, d4524m/9,
andd6528m/9. These slopes are marked in Fig. 3 and se
to be consistent with the empirical slopes in the compensa
curves of the alternative fusion rule. Given the small Re
nolds number, one can of course argue whether there is s
ing at all.

We conclude that the scaling of then-p largeR eddies is
well affected by the presence of thep smallerr eddies, this
effect being due completely to multiscaling. In contrast, t
small r eddies are curling as if they were free, uneffected
the large eddies in whose field they move.

FIG. 3. Compensated plotsJnJ2
21/Sn22 as functions ofR/h for

n54 ~lower! andn56 ~upper!, choosingr 53.6h, 18h, and 36h.
Again L indicates whereR5r ; the relevant ranger ,R is towards
the right. The full straight lines represent the slopes24m/9
520.093 and28m/9520.187 form50.21 ~taken from@6# as an
appropriate fit value in the K62 intermittency model!. Jn /J2 clearly
seems to behave asSn(R)/S2(R) instead ofSn22(R).
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The factorization rule~7! for the choicehn!r !R has
been confirmed previously already with measured data@10#.
@In Ref. @10# the Jn erroneously have an additional fact
n/2; for the structure functions theSn* (R) are used.# Due to
restrictions in the smallr resolution of the measured data,
verification of the VSR fusion rules was not possible. Th
was another motivation for the present numerical work.

We now consider the easily accessible case whenr is in
the VSR, i.e.,r /h,O(10). The argument for the factoriza
tion ~5! was based on strictly keeping the scaling expon
zn of Fn also in its factorized form. We tacitly assumed th
the smallr as well as the largeR scaling exponents are th
ISR typezp , which is natural if both smallr and largeR are
in the ISR. If r P VSR, its scaling exponentzp is regular,
instead, zp→p. Then the homogeneity exponent
F̃p,n-p(R) under rescaling withl is zn-p instead ofzn-zp .
ThereforeF̃p,n-p(R) can no longer be described by the ra
Sn(R)/Sp(R) becauseR is in the ISR and thus the denom
nator has the scaling behaviorzp , but not p as desired.
Therefore the ISR factorization rule~7! is expected to be-
come invalid ifr is below'10h. This is supported by Figs
1 and 2~lower!.

Incidentally, if both r and R are in the VSR they both
have regular monoscaling exponentsp andn-p. But here the
argument of statistical independence due tor !R ceases to
be valid, i.e., no factorization is possible anymore; and i
not necessary either, because there is regularr,R dependence

If r !hn!R!L, denoted as the (r )VSR case, two com-
peting factorizations are at hand. One of them is derived
Refs.@2# and @1#, saying

Jn~r ,R!5C̃nSn11~R!/S3~R!. ~15!

The other one, which strictly adheres to the invariance of
total Fn scaling behavior under factorization reads

Jn~r ,R!5Ĉn

S2~r !

r 2

Sn~R!

R2
;

S2~r !

r 2

Sn~R!

S3
2~R!

,

r P VSR, RP ISR, r !R. ~16!

This factorization is based on the assumption that thenth
order correlation has the homogeneity exponentzn irrespec-
tive of r ,R being in the same or in different subranges. T
RHS has scaling exponentzn , becauseS2(lr )}l2S2(r ) for
r P VSR and alsoS3

2(lR)5l2S3
2(R) for RP ISR, sinceS3

}R from the Howard–van Ka´rmán–Kolmogorov structure
equation.@More generallyFn(r ,R)}Sp(r )Sn(R)/S3

p(R).#
There is not much difference between Eqs.~15! and ~16!

in the small r dependence, becauseS2(r )}r 2 for small r.
The factorization~15! says that the LHS is independent ofr
once r is less thanh. It furthermore states that then22
factors ofv(R) in Jn scale with exponentzn1121 or, if

Jn~lr ,lR!5lz̃nJn~r ,R! then z̃n5zn1121. ~17!

Since in the equation of motion ther→0 limit of Jn(r ,R) is
needed, the VSR factorization~‘‘fusion’’ ! rule is of consid-
erable importance. The quality of Eq.~15! for numerical tur-
bulence is tested in Figs. 1 and 2, lower triples respectiv
t
t

s

in

e

e

y.

Again, we use compensated plots, this time dividingJn /J2
by the expected VSR-scaling behavior, i.e., the right ha
side of Eq. ~15!. If that holds, one would again expect
straight line. Indeed, ifr 53.6h, i.e., r is in the VSR, the line
is straighter than forr values in the ISR, but the result is no
completely conclusive because of the low Reynolds numb

We also present Figs. 4 and 5 in order to identify possi
differences ifSn* is taken instead ofSn . This is irrelevant in
the case of the inertial range factorization rule, since
involved n52,4,6 are all even. But the VSR factorizatio
~15! comprises oddn. As Figs. 4 and 5 show there are no
cable differences in the details of the respective upper
lower triples, but the curves are structurally the same.

An argument leading to Eq.~15! is start with the ISR
fusion rule~7! and reducer continuously to submerge in th
VSR eventually. That means, keep theR dependence of the
RHS and fixr at the crossover from the ISR to the VSR, i.e
fix r atO(hn). Thenr 22S2(r )}hn

22hn
z2 . Now it is important

that the crossover scalehn not only depends on the ordern
of the moment but also on the scaleR, see@1#, according to

hn5h~R/L !xn,

with

FIG. 4. The VSR factorization~15!, i.e., J4J2
21 divided by

S5* S3*
21 ~upper triple! or by S5S3

21 ~lower triple!. The latter is the
same as in Fig. 1. For more information see the caption of Fig
While the two triples of curves are structurally similar, there a
differences in detail if theSn* or theSn are taken.

FIG. 5. The VSR factorization~15! of J6J2
21 divided by

S7* S3*
21 ~upper triple! or by S7S3

21 ~lower triple!. Again there are
differences in the detailed behaviors between upper and lower
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xn5~zn1z32zn112z2!/~22z2!. ~18!

In particular,h25h as it should. TheR dependence of the
hn as well as theirn dependence originates from multisca
ing as the signature of intermittency. In K41 one hasxn50
andhn5h for all n. Relation~18! implies

r 2S2~r !ur'hn
}Rzn111z22zn2z3, ~19!

which when used together with Eq.~7! leads to

Jn~r'h,R!}Rzn112z3. ~20!

This is just Eq.~15!. For monoscaling~linear n dependence!
this coincides with Eq.~7! at r 5h. It therefore is of high
interest to identify the validity and the differences betwe
Eqs. ~7! and ~15!, the fusion rules in ther-ISR andr-VSR
cases, with convincing significance.

Both r-VSR factorization rules~15! and~16! might not be
considered as based on safe arguments. It therefore s
adequate to study the special casen52 separately, where
everything can be evaluated explicitly. Only the statisti
spatial homogeneity of the flow is used. Start with Eq.~2!,
choose n52 and find r 2J2(r ,R)5^u(x1r)u(x1R)
22u(x)u(x1R)1u(x2r)u(x1R)2u(x1r)u(x)12u2(x)
2u(x2r)u(x)&. Employing translational invariance, e.g
u(x1r)u(x1R)5̂u(x)u(x1R2r), etc., straightforwardly
leads to the relation

J2~r ,R!5r 22H S2~r !1FS2~R!2
1

2
„S2~R1r !

1S2~R2r !…G J . ~21!

In the limit r→0 one can expandS2(r ) and @•••# up to
second order inr and finds

J2~r ,R!5^~]1u1!2&2
1

2

d2S2

dR2
. ~22!

If R is in the ISR, the second term becomes small asRz222,
i.e., roughly }R24/3, and the first, constant term remain
This is compatible with Eq. ~15! for n52, if Ĉ2
5^(]1u1)2&, while Eq. ~16! is excluded because it ap
proaches 0 as}R24/3. Also the ISR fusion rule~7! for n
52 is reproduced to leading order. On the other hand,
functional dependence ofJ2(r ,R) on bothr andR does not
change ifr passes from the ISR to the VSR. The only re
evant property isr !R.

A generalization of Eq.~22! for n.2 has been derived in
Ref. @7#.

Jn~r→0,R!5Ĉn^~]1u1!2&
Sn~R!

S2~R!
2

1

n

d2

dR2
Sn~R!, RP ISR.

~23!

If n is large enough, the second term does no longer decr
with increasingR. It grows instead. But still its size shrink
relative to the first term asRz222→0. For n52 Eq. ~22! is
recovered. Note that the generalization~23!, for large enough
n

ms

l

e

se

R to neglect the second term, well reproduces ther-ISR fu-
sion rule~7! but does not coincide with ther-VSR rule~15!
as it should, sincer→0 is considered.

To analyze the differences between the ISR and the V
factorization rules further we now consider the average~dis-
cretized! curvatureD ru under the condition that theR-eddy
velocity differencev(x,R;t) has the valuevR . We denote
this conditional average as^D ruuvR&. It allows us to compute
the Jn(r ,R) from ~2! by using thevR-probability densities,

Jn~r ,R!5E ^D ruuvR&vR
n21PR~vR!dvR . ~24!

Here PR(vR) is the ~unconditioned! probability density to
find the R-eddy velocity differencevR , which can be ob-
tained directly from the numerical solution for each chos
eddy sizeR, on whichPR depends.

The conditional averageŝD ruuvR& can be calculated via
unconditioned probabilities. It is

^D ruuvR&5E Pr ,R~kuvR!kdk5E Pr ,R~k,vR!

PR~vR!
kdk.

~25!

Here Pr ,R(k,vR) is the common joint probability density to
find the field curvaturek5̂D ru andtheR-eddy velocityvR .
The fraction has the meaning of the conditional probabi
densityPr ,R(kuvR).

The fusion rules~7! and ~15! follow immediately if the
conditional curvature averages have linear or quadratic
pendence on the conditioning eddy fieldvR , as was indi-
cated in Refs.@1,10#. In the r-ISR caseh!r !R the linear
ansatz

^D ruuvR&5@Cnr 22S2~r !/S2~R!#vR

5@J2~r ,R!/S2~R!#vR ~26!

inserted into Eq.~24! immediately leads to Eq.~7!. The qua-
dratic vR dependence

^D ruuvR&5@C̃n /S3~R!#vR
2 ~27!

in turn gives ther-VSR factorization~15!. To be more pre-
cise, the ansatz~27! is a sufficient condition to imply Eq.
~15!. Alternatively, as argued in Ref.@11#, ^D ruuvR& may be
an infinite series invR , of which we shall study the begin
ning, see Eq.~28!. The dependencies~26! and~27! on vR are
so markedly different that the conditional average repres
tation ~24! seems qualified to become a sensitive check
Eqs. ~26! and ~27! could be proven to hold, the validity o
the fusion rules~7! and ~15! in the r-ISR and ther-VSR
cases were strongly supported.

We have determined the conditional averages^D ruuvR&
numerically viaPr ,R(k,vR) and PR(vR) from Eq. ~25! for
two values ofr, one in the ISR,r 536h, the other one in the
VSR, r 53.6h, as functions ofvR for various fixedR. The
curves are displayed in Figs. 6 and 7.

While the linear dependence of^D ruuvR& nicely confirms
the ISR fusion rule~7!, the completely missing quadraticvR
dependence~27! excludes the possibility to understand E
~15! from a simple product ansatz for the conditional pro
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ability ^D ruuvR&, leaving the possibility of an infinite serie
expansion as stated in Ref.@11# to be tested. The alternativ
~16!, on the other hand, is consistent,Jn}Sn(R). Linear laws
for the conditional averages have been discussed also in
context of passive scalar advection@11–15#. For the choice
r P ISR this linear vR dependence has been studied
Navier-Stokes turbulence by Fairhallet al. @10#. In the
present paper we add data onr-VSR conditional averages.

We can check the direct method~2! to calculate theJn
and the conditional average representation~24! against each
other, see Figs. 8 and 9 for the casesn52 and 3. We have
also evaluatedJ4 andJ6 and have found similar agreeme
between the various methods@Eqs.~2! or ~24!# as in the case
J2. The corresponding curves are not displayed here.

To a good approximation the conditional average of
field curvatureD ru depends linearly onvR , irrespective ofr
being in the ISR or in the VSR, above or belowh. This
agrees nicely with the observation in Eq.~21! that h is no
explicitly relevant quantity forJ2(r ,R).

To control the deviations from the linear behavior we fi

FIG. 6. The conditional averagêD ruuvR& in multiples of
J2(r ,R)/S2(R) versusvR in multiples ofurms(51.40) in a double
logarithmic plot. r 536h is in the ISR. The large eddy scaleR
varies through 36h,54h,72h, all in the ISR or even in the stirring
subrange. The expected linear behavior~26! is evident. The slope of
the linear part is 1, as it should.

FIG. 7. The conditional averagêD ruuvR& if r 53.6h is in the
VSR; the same values ofR as in Fig. 5. With convincing evidenc
it is not quadratic with respect tovR but linear, too, at least for
negativevR and up to'3urms for positive ones.urms, by the way,
is 1.40. We believe, this asymmetry is a consequence of insuffic
statistics for the large fluctuationsuvRu and has not necessarily sig
nificance.
he

r

eted the conditional averages with the beginning of a serie
vR ,

^D ruuvR&5 f 1~r ,R!vR1 f 3~r ,R!vR
3 . ~28!

No even power invR is present, because the numerica
obtained dependence of the conditional average onvR is
clearly uneven. Inserting Eq.~28! into Eq. ~24! leads to

Jn~r ,R!5 f 1~r ,R!Sn~R!1 f 3~r ,R!Sn12~R!. ~29!

If both r andR are in the ISR, the second term is small, s
Fig. 6 and Table I, and the ISR factorization~7! obtained. If
r P VSR the linear and linear plus cubic interpolations diff
from each other and also fromJ2 from the definition~2!, see
Figs. 8 and 9. Table I offers numbers forf 1(r ,R) and
f 3(r ,R).

The series expansion ofJn according to the numerica
findings and to the odd power expansion of the conditio
averages differs in its symmetry under reflection of the ed
velocity, v(R)→2v(R), from the VSR fusion rule~15!. It
behaves as (21)n, while Eq. ~15! goes as (21)n11. It thus
is not yet clear, how the VSR ruleJn;Sn11(R)/R can be
reconciled with the conditional average results. Furth
analysis is clearly necessary to get a sufficiently firm base
the r-VSR fusion properties.

If the flow field curvatureD ru is not discretized the re
sulting correlation function has some resemblance

nt

FIG. 8. ~a! Double logarithmic plot ofJ2(r ,R) versusR/h for
r 536h in the ISR. The directly calculatedJ2 from the definition
~2! and that from the conditional average representation~24! very
well agree, for both the linear and the linear plus cubic interpolat
~28! of ^D ruuvR&. ~b! J2(r ,R) versusR/h if r 53.6h is in the VSR.
We can compare with the constant value of^(]1u1)2&, the dotted
horizontal line, as given by Eq.~22!. Here the mutual agreement i
not very satisfactory.r 53.6h might still not be in the asymptotic
ranger→0.
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^evn21(R)&, wheree(x,t) denotes the local dissipation ra
per mass. In Ref.@2# so-called bridge relations for such ob
jects have been advocated, saying here that

^evn21~R!&}Sn12~R!/R. ~30!

This relation compares with ther-VSR factorization rule
~15!. But note,e in Eq. ~30! contains two factors ofu and is
a ~gradientu)—squared and thus is a different correlati
function asJn . The bridge relation~30! has recently been
checked@16# by numerical solution on a 5123 lattice, Rel

FIG. 9. 2J3(r ,R) versusR/h for the two casesr 536h ~a! and
r 53.6h ~b!. With the cubic fit for the conditional average there
good agreement between the direct and the conditional average
culations ofJ3. See also Fig. 8.
,

5220 and 300, and found to be valid within reasonable
proximation in a compensated plot. It seems worthwhile
also study the conditional average representation which
we found may be more sensitive.

To conclude, the ISR factorization or ‘‘fusion’’ rules ar
shown to be ‘‘valid’’ under various different checks. But w
also caution the reader: In Ref.@7# it has been pointed ou
that in order to have a very clear test of the fusion ru
predictions, one has to have Rel'2000. There is no chang
in any numerical study to achieve this. However, the ben
of numerical studies can be good resolution towards sm
scales. We find that the small scaler-VSR fusion rules are
far less clear. The corresponding conditional probabilities
objects to study these fusion rules more sensitively. The c
ditional average field curvature on scaler, D ru, essentially
depends linearly on the conditioning eddy velocity fluctu
tion, irrespective ofr less than or beyondh.
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al-

TABLE I. Representative values for the coefficientsf 1(r ,R)
and f 3(r ,R) of the conditional average interpolation formula~28!.
Upper: the ISR caser 536h; lower: the VSR choicer 53.6h. The
cubic term is markedly larger ifr is in the VSR.

R/h 36 54 72

f 1 1.12 0.852 0.702
f 3 / f 1 0.00221 0.00184 0.00166

R/h 18 36 54 72
f 1 7.90 3.97 3.00 2.58
f 3 / f 1 0.0167 0.00685 0.00306 0.00274
.
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